Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.000
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593652

RESUMEN

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Asunto(s)
Catalasa , Rayos Ultravioleta , Catalasa/metabolismo , Catalasa/química , Humanos , Epidermis/efectos de la radiación , Epidermis/metabolismo , Epidermis/enzimología , Piel/efectos de la radiación , Piel/metabolismo , Piel/química , Queratinas/química , Queratinas/metabolismo
2.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523449

RESUMEN

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Asunto(s)
Antioxidantes , Auricularia , Basidiomycota , Antioxidantes/metabolismo , Humedad , Frutas/metabolismo , Catalasa/metabolismo , Ácido Ascórbico , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Basidiomycota/metabolismo , Peroxidación de Lípido
3.
Sci Rep ; 14(1): 7617, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556603

RESUMEN

The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.


Asunto(s)
Quercetina , Renina , Ratas , Masculino , Animales , Quercetina/uso terapéutico , Renina/metabolismo , Catalasa/metabolismo , Aldosterona/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Hipoxia/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Angiotensina I/farmacología , Riñón/metabolismo
4.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406827

RESUMEN

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Asunto(s)
Cannabidiol , Neoplasias , Humanos , Cisplatino/toxicidad , Cannabidiol/farmacología , Cannabidiol/metabolismo , Cannabidiol/uso terapéutico , Caquexia/metabolismo , Catalasa/metabolismo , Calidad de Vida , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/farmacología , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/tratamiento farmacológico , Estrés Oxidativo , Neoplasias/metabolismo , ARN Mensajero/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338758

RESUMEN

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Asunto(s)
Arecaceae , Peróxido de Hidrógeno , Catalasa/metabolismo , Filogenia , Peróxido de Hidrógeno/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Aceite de Palma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Cardiovasc Toxicol ; 24(2): 122-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38165500

RESUMEN

Doxorubicin is one of the most important antitumor drugs used in oncology; however, its cardiotoxic effect limits the therapeutic use and raises concerns regarding patient prognosis. Leucine is a branched-chain amino acid used in dietary supplementation and has been studied to attenuate the toxic effects of doxorubicin in animals, which increases oxidative stress. Oxidative stress in different organs can be estimated using several methods, including catalase expression analysis. This study aimed to analyze the effect of leucine on catalase levels in rat hearts after doxorubicin administration. Adult male Wistar rats were separated into two groups: Standard diet (SD) and 5% Leucine-Enriched Diet (LED). The animals had free access to diet from D0 to D28. At D14, the groups were subdivided in animals injected with Doxorubicin and animals injected with vehicle, until D28, and the groups were SD, SD + Dox, LED and LED + Dox. At D28, the animals were submitted do Transthoracic Echocardiography and euthanized. Despite Dox groups had impaired body weight gain, raw heart weight was not different between the groups. No substantial alterations were observed in macroscopic evaluation of the heart. Although, Doxorubicin treatment increased total interstitial collagen in the heart, which in addition to Type I collagen, is lower in LED groups. Western blot analysis showed that catalase expression in the heart of LED groups was lower than that in SD groups. In conclusion, leucine supplementation reduced both the precocious Dox-induced cardiac remodeling and catalase levels in the heart.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Humanos , Ratas , Animales , Masculino , Catalasa/metabolismo , Leucina/farmacología , Leucina/metabolismo , Leucina/uso terapéutico , Ratas Wistar , Doxorrubicina/farmacología , Estrés Oxidativo , Suplementos Dietéticos
7.
Toxicon ; 237: 107553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072319

RESUMEN

Aflatoxin B1 (AFB1) is a widely distributed mycotoxin, causing hepatotoxicity and oxidative stress. One of the most famous unicellular cyanobacteria is Spirulina platensis (SP) which is well known for its antioxidant characteristics against many toxicants. Therefore, this study aimed to investigate the antioxidant potential and hepatoprotective ability of SP against oxidative stress and cytotoxicity in male Wistar albino rats intraperitoneally injected with AFB1. Rats were separated into five groups as follows: negative control administered with saline; SP (1000 mg/kg BW) for two weeks; AFB1 (2.5 mg/kg BW) twice on days 12 and 14; AFB1 (twice) + 500 mg SP/kg BW (for two weeks) and AFB1 (twice) + 1000 mg SP/kg BW (for two weeks). Liver and blood samples were assembled for histological and biochemical analyses. AFB1 intoxicated rats showed a marked elevation in serum biochemical parameters (ALP, ALT, and AST), hepatic lipid peroxidation (MDA and NO), and proliferating cell nuclear antigen (PCNA) indicating DNA damage. Moreover, AFB1 caused suppression of antioxidant biomarkers (SOD, GHS, GSH-Px, and CAT). However, the elevated serum levels of biochemical parameters and PCNA expression were reduced by SP. Moreover, SP lowered oxidative stress and lipid peroxidation markers in a dose-dependent manner. To sum up, SP supplementation is capable of decreasing AFB1 toxicity through its powerful antioxidant activity.


Asunto(s)
Aflatoxina B1 , Antioxidantes , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas Wistar , Catalasa/metabolismo , Estrés Oxidativo , Hígado/metabolismo , Daño del ADN
8.
Biol Trace Elem Res ; 202(2): 643-658, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37231320

RESUMEN

Heavy metals (HM)in the environment have provoked global attention because of its deleterious effects. This study evaluated the protection offered by Zn or Se or both against HMM-induced alterations in the kidney. Male Sprague Dawley rats were distributed into 5 groups of 7 rats each. Group I served as normal control with unrestricted access to food and water. Group II received Cd, Pb, and As (HMM) per oral daily for 60 days while groups III and IV received HMM in addition to Zn and Se respectively for 60 days. Group V received both Zn and Se in addition to HMM for 60 days. Metal accumulation in feces was assayed at days 0, 30, and 60 while accumulation in the kidney and kidney weight were measured at day 60. Kidney function tests, NO, MDA, SOD, catalase, GSH, GPx, NO, IL-6, NF-Κb, TNFα, caspase 3, and histology were assessed. There is a significant increase in urea, creatinine, and bicarbonate ions while potassium ions decreased. There was significant increase in renal function biomarkers, MDA, NO, NF-Κb, TNFα, caspase 3, and IL-6 while SOD, catalase, GSH, and GPx decrease. Administration of HMM distorted the integrity of the rat kidney, and co-treatment with Zn or Se or both offered reasonable protection suggesting that Zn or Se could be used as an antidot against the deleterious effects of these metals.


Asunto(s)
Metales Pesados , Selenio , Ratas , Masculino , Animales , Catalasa/metabolismo , Caspasa 3/metabolismo , Selenio/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Metales Pesados/metabolismo , Riñón/metabolismo , Zinc/farmacología , Zinc/metabolismo , Superóxido Dismutasa/metabolismo , Suplementos Dietéticos , Estrés Oxidativo , Cadmio/farmacología
9.
Biol Trace Elem Res ; 202(4): 1644-1655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37495827

RESUMEN

This study evaluated the effect of prepubertal arsenic exposure in the liver and kidney of pubescent rats and their reversibility 30 days after arsenic withdrawal. Male pups of Wistar rats (21 days old) were divided into two groups (n = 20/group): control animals received filtered water, and exposed rats received 10 mg L-1 arsenic from postnatal day (PND) 21 to PND 51. The liver and kidney of 52 days old rats (n = 10/group) were examined to investigate the effects of arsenic on micromineral content, antioxidant enzyme activity, histology, and biochemistry parameters. The other animals were kept alive under free arsenic conditions until 82 days old and further analyzed by the same parameters. Our results revealed that 52-day-old rats increased arsenic content in their liver and arsenic and manganese in their kidney. In those animals, glycogen and zinc content and catalase activity were reduced in the liver, and the selenium content decreased in the kidney. Thirty days later, arsenic reduced the manganese and iron content and SOD and CAT activity in the liver of 82-day-old rats previously exposed to arsenic, while glycogen and selenium content decreased in their kidney. In contrast, PND 82 rats exhibited higher retention of copper in the liver, an increase in iron and copper content, and CAT and GST activity in the kidney. Significant histological alterations of liver and kidney tissues were not observed in rats of both ages. We conclude that arsenic-induced toxicity could alter differently the oxidative status and balance of trace elements in pubertal and adult rats, demonstrating that the metalloid can cause effects in adulthood.


Asunto(s)
Arsénico , Selenio , Ratas , Masculino , Animales , Arsénico/metabolismo , Cobre/farmacología , Ratas Wistar , Selenio/farmacología , Selenio/metabolismo , Manganeso/farmacología , Catalasa/metabolismo , Antioxidantes/metabolismo , Hígado/metabolismo , Riñón/metabolismo , Hierro/metabolismo , Estrés Oxidativo , Glucógeno/metabolismo
10.
Psychopharmacology (Berl) ; 241(2): 315-326, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882813

RESUMEN

RATIONALE: Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES: In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS: Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS: Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.


Asunto(s)
Metanfetamina , Ácido Tióctico , Ratas , Masculino , Animales , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Catalasa/farmacología , Ratas Wistar , Metanfetamina/farmacología , Aceite de Girasol/metabolismo , Aceite de Girasol/farmacología , Estrés Oxidativo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Ansiedad/inducido químicamente , Ansiedad/tratamiento farmacológico , Ansiedad/prevención & control , Hipocampo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología
11.
J Plant Physiol ; 291: 154135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939449

RESUMEN

Owing to its easy decomposition and residue-free properties, ozone has been used as an effective and environmentally friendly physical preservation method for maintaining the post-harvest quality of fruits. This study aimed to investigate the effects of ozone treatment on the levels of oxidative stress markers and the status of the antioxidant defense system in refrigerated kiwifruit. Additionally, the study aimed to identify the differences in gene expression levels and potential regulatory effects from the transcriptional level. The results showed that ozone treatment reduced the respiration rate, maintained the fruit hardness and storage quality, and inhibited the ripening and senescence of kiwifruit. Ozone treatment activated antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and ascorbate-glutathione cycle to prevent the increase of reactive oxygen species levels (H2O2, O2-•) and malonaldehyde content, maintaining lower membrane lipid peroxidation and reactive oxygen species (ROS) accumulation than the control treatment. Further analysis showed that the regulatory ability of ROS in kiwifruit treated with ozone was not only related to the synergistic effect of enzyme activity and gene expression related to the antioxidant oxidase system and the ascorbate-glutathione (ASA-GSH) cycle but also related to downstream hormone signaling. This study provides a foundation for understanding the potential effects of ozone treatment on the antioxidant cycle of kiwifruit and provides valuable insights into the molecular basis and related key genes involved in regulating ROS to delay aging in kiwifruit.


Asunto(s)
Antioxidantes , Ozono , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ozono/farmacología , Ozono/metabolismo , Frutas/metabolismo , Peróxido de Hidrógeno/metabolismo , Transcriptoma , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo
12.
Arh Hig Rada Toksikol ; 74(3): 218-223, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37791674

RESUMEN

Valproate is known to disturb the kidney function, and high doses or prolonged intake may cause serum ion imbalance, kidney tubular acidosis, proteinuria, hyperuricosuria, polyuria, polydipsia, and dehydration. The aim of this in vivo study was to see whether naringin would counter the adverse effects of high-dose valproate in C57Bl/6 mice and to which extent. As expected, valproate (150 mg/kg bw a day for 10 days) caused serum hyperkalaemia, more in male than female mice. Naringin reversed (25 mg/kg bw a day for 10 days) the hyperkalaemia and activated antioxidative defence mechanisms (mainly catalase and glutathione), again more efficiently in females. In males naringin combined with valproate was not as effective and even showed some prooxidative effects.


Asunto(s)
Antioxidantes , Hiperpotasemia , Femenino , Masculino , Animales , Ratones , Antioxidantes/farmacología , Ácido Valproico/toxicidad , Peroxidación de Lípido , Ratones Endogámicos C57BL , Riñón , Catalasa/metabolismo , Catalasa/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología
13.
Radiat Res ; 200(5): 444-455, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37758045

RESUMEN

Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Catalasa/metabolismo , Catalasa/uso terapéutico , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/uso terapéutico , Ciclina B1 , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/farmacología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas
14.
Environ Pollut ; 337: 122526, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683757

RESUMEN

Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 µM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.


Asunto(s)
Oryza , Selenio , Antioxidantes/metabolismo , Selenio/farmacología , Selenio/metabolismo , Cadmio/metabolismo , Oryza/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Fitoquelatinas/metabolismo , Glutatión Peroxidasa/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-37567646

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Humanos , Ratas , Masculino , Animales , Óxido de Zinc/toxicidad , Ratas Wistar , Catalasa/metabolismo , Quercetina/farmacología , Nanopartículas del Metal/toxicidad , Estrés Oxidativo , Nanopartículas/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Daño del ADN , Superóxido Dismutasa/metabolismo , Aberraciones Cromosómicas/inducido químicamente
16.
Neurochem Res ; 48(12): 3538-3559, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526866

RESUMEN

Chronic exposure to stress is a non-adaptive situation that is associated with mitochondrial dysfunction and the accumulation of reactive oxygen species (ROS), especially superoxide anion (SA). This accumulation of ROS produces damage-associated molecular patterns (DAMPs), which activate chronic inflammatory states and behavioral changes found in several mood disorders. In a previous study, we observed that an imbalance of SA triggered by rotenone (Ro) exposure caused evolutionarily conserved oxi-inflammatory disturbances and behavioral changes in Eisenia fetida earthworms. These results supported our hypothesis that SA imbalance triggered by Ro exposure could be attenuated by lithium carbonate (LC), which has anti-inflammatory properties. The initial protocol exposed earthworms to Ro (30 nM) and four different LC concentrations. LC at a concentration of 12.85 mg/L decreased SA and nitric oxide (NO) levels and was chosen to perform complementary assays: (1) neuromuscular damage evaluated by optical and scanning electron microscopy (SEM), (2) innate immune inefficiency by analysis of Eisenia spp. extracellular neutrophil traps (eNETs), and (3) behavioral changes. Gene expression was also evaluated involving mitochondrial (COII, ND1), inflammatory (EaTLR, AMP), and neuronal transmission (nAchR α5). LC attenuated the high melanized deposits in the circular musculature, fiber disarrangement, destruction of secretory glands, immune inefficiency, and impulsive behavior pattern triggered by Ro exposure. However, the effects of LC and Ro on gene expression were more heterogeneous. In summary, SA imbalance, potentially associated with mitochondrial dysfunction, appears to be an evolutionary component triggering oxidative, inflammatory, and behavioral changes observed in psychiatric disorders that are inhibited by LC exposure.


Asunto(s)
Oligoquetos , Estrés Oxidativo , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Litio/farmacología , Rotenona/toxicidad , Superóxidos/metabolismo , Encéfalo/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo
17.
J Environ Sci (China) ; 133: 23-36, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37451786

RESUMEN

With increasing production of kitchen waste, cooking oil gradually enters the soil, where it can negatively affect soil fauna. In this study, we explored the effects of soybean oil on the survival, growth, reproduction, tissue structure, biochemical responses, mRNA expression, and gut microbiome of earthworms (Eisenia fetida). The median lethal concentration of soybean oil was found to be 15.59%. Earthworm growth and reproduction were significantly inhibited following exposure to a sublethal concentration of soybean oil (1/3 LC50, 5.2%). The activity of the antioxidant enzymes total superoxide dismutase (T-SOD), peroxidase (POD), and catalase (CAT) were affected under soybean oil exposure. The glutathione (GSH) content decreased significantly, whereas that of the lipid peroxide malondialdehyde (MDA) increased significantly after soybean oil exposure. mRNA expression levels of the SOD, metallothionein (MT), lysenin and lysozyme were significantly upregulated. The abundance of Bacteroides species, which are related to mineral oil repair, and Muribaculaceae species, which are related to immune regulation, increased within the earthworm intestine. These results indicate that soybean oil waste is toxic to earthworms. Thus, earthworms deployed defense mechanisms involving antioxidant system and gut microbiota for protection against soybean oil exposure-induced stress.


Asunto(s)
Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Antioxidantes/metabolismo , Oligoquetos/fisiología , Aceite de Soja/metabolismo , Aceite de Soja/farmacología , Contaminantes del Suelo/análisis , Catalasa/metabolismo , Catalasa/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Malondialdehído/farmacología , Reproducción , Suelo/química , ARN Mensajero/metabolismo , ARN Mensajero/farmacología
18.
Molecules ; 28(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513429

RESUMEN

From Eleutherine plicata, naphthoquinones, isoeleutherine, and eleutherol were isolated, and previous studies have reported the antioxidant activity of these metabolites. The present work evaluated the role of oxidative changes in mice infected with Plasmodium berghei and treated with E. plicata extract, fraction, and isolated compounds, as well as to verify possible oxidative changes induced by these treatments. E. plicata extracts were prepared from powder from the bulbs, which were submitted to maceration with ethanol, yielding the extract (EEEp), which was fractionated under reflux, and the dichloromethane fraction (FDMEp) was submitted for further fractionation, leading to the isolation of isoeleutherine, eleutherine, and eleutherol. The antimalarial activity was examined using the suppressive test, evaluating the following parameters of oxidative stress: trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), and reduced glutathione (GSH). Furthermore, the molecular docking of naphthoquinones, eleutherol, eleutherine, and isoeleutherine interactions with antioxidant defense enzymes was investigated, which was favorable for the formation of the receptor-ligand complex, according to the re-rank score values. Eleutherine and isoeleutherine are the ones with the lowest binding energy for catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx1), showing themselves as possible targets of these molecules in the involvement of redox balance. Data from the present study showed that treatments with E. plicata stimulated an increase in antioxidant capacity and a reduction in oxidative stress in mice infected with P. berghei, with naphthoquinones being responsible for reducing oxidative changes and disease severity.


Asunto(s)
Antioxidantes , Naftoquinonas , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Naftoquinonas/química , Catalasa/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Superóxido Dismutasa/metabolismo
19.
Mol Cell Endocrinol ; 576: 112034, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516434

RESUMEN

Antioxidant actions of melatonin and its impact on testicular function and fertility have already been described. Considering that Sertoli cells contribute to provide structural support and nutrition to germ cells, we evaluated the effect of melatonin on oxidative state and lactate metabolism in the immature murine TM4 cell line and in immature hamster Sertoli cells. A prooxidant stimulus applied to rodent Sertoli cells expressing MT1/MT2 receptors, increased lipid peroxidation whereas decreased antioxidant enzymes (superoxide dismutase 1, catalase, peroxiredoxin 1) expression and catalase activity. These changes were prevented by melatonin. Furthermore, melatonin stimulated lactate dehydrogenase (LDH) expression/activity via melatonin receptors, and increased intracellular lactate production in rodent Sertoli cells. Interestingly, oral melatonin supplementation in infertile men positively regulated LDHA testicular mRNA expression. Overall, our work provides insights into the potential benefits of melatonin on Sertoli cells contributing to testicular development and the future establishment of a sustainable spermatogenesis.


Asunto(s)
Melatonina , Células de Sertoli , Masculino , Cricetinae , Ratones , Animales , Células de Sertoli/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Catalasa/genética , Catalasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Roedores/metabolismo , Estrés Oxidativo , Lactatos/metabolismo
20.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298655

RESUMEN

(1) In this study we determined the effect of long-term selenomethionine administration on the oxidative stress level and changes in antioxidant protein/enzyme activity; mRNA expression; and the levels of iron, zinc, and copper. (2) Experiments were performed on 4-6-week-old BALB/c mice, which were given selenomethionine (0.4 mg Se/kg b.w.) solution for 8 weeks. The element concentration was determined via inductively coupled plasma mass spectrometry. mRNA expression of SelenoP, Cat, and Sod1 was quantified using real-time quantitative reverse transcription. Malondialdehyde content and catalase activity were determined spectrophotometrically. (3) After long-term SeMet administration, the amount of Se increased by 12-fold in mouse blood, 15-fold in the liver, and 42-fold in the brain, as compared to that in the control. Exposure to SeMet decreased amounts of Fe and Cu in blood, but increased Fe and Zn levels in the liver and increased the levels of all examined elements in the brain. Se increased malondialdehyde content in the blood and brain but decreased it in liver. SeMet administration increased the mRNA expression of selenoprotein P, dismutase, and catalase, but decreased catalase activity in brain and liver. (4) Eight-week-long selenomethionine consumption elevated Se levels in the blood, liver, and especially in the brain and disturbed the homeostasis of Fe, Zn, and Cu. Moreover, Se induced lipid peroxidation in the blood and brain, but not in the liver. In response to SeMet exposure, significant up-regulation of the mRNA expression of catalase, superoxide dismutase 1, and selenoprotein P in the brain, and especially in the liver, was determined.


Asunto(s)
Selenio , Oligoelementos , Ratones , Animales , Oligoelementos/farmacología , Oligoelementos/análisis , Antioxidantes/farmacología , Selenio/farmacología , Catalasa/genética , Catalasa/metabolismo , Cobre/análisis , Peroxidación de Lípido , Selenometionina/farmacología , Selenoproteína P/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Homeostasis , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA